Heartland

A Global Payments Company

Heartland Android SDK

Heartland

A Global Payments Company

Notice

THE INFORMATION CONTAINED HEREIN IS PROVIDED AS IS WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANT ABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. THERE IS NO WARRANTY THAT THE INFORMATION OR THE USE
THEREOF DOES NOT INFRINGE A PATENT, TRADEMARK, COPYRIGHT, OR TRADE SECRET.

HEARTLAND PAYMENT SYSTEMS SHALL NOT BE LIABLE FOR ANY DIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN,
WHETHER RESULTING FROM BREACH OF CONTRACT, BREACH OF WARRANTY, NEGLIGENCE, OR
OTHERWISE, EVEN IF HEARTLAND PAYMENT SYSTEMS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES. HEARTLAND PAYMENT SYSTEM RESERVES THE RIGHT TO MAKE CHANGES TO THE
INFORMATION CONTAINED HEREIN AT ANY TIME WITHOUT NOTICE.

THIS DOCUMENT AND ALL INFORMATION CONTAINED HEREIN, IS PROPRIETARY HEARTLAND PAYMENT
SYSTEMS INFORMATION. THE USER SHALL NOT, UNDER ANY CIRCUMSTANCES, DISCLOSE THIS
DOCUMENT OR THE SYSTEM DESCRIBED TO ANY THIRD PARTY WITHOUT PRIOR WRITTEN CONSENT OF
A DULY AUTHORIZED REPRESENTATIVE OF HEARTLAND PAYMENT SYSTEMS. TO SATISFY THIS
PROPRIETARY OBLIGATION, THE USER AGREES TO TAKE APPROPRIATE ACTION WITH ITS EMPLOYEES
OR OTHER PERSONS PERMITTED ACCESS TO THIS INFORMATION.

Heartland

A Global Payments Company

Table of Contents

History of revision....................
SDK Configuration....................
Bluetooth Pairing.....................
USB (Moby 5500)...........ccccuvveee.
Transaction Listener.................
Transaction Processing............
AutoSubstantiation...................
OTA Updating........cccoovvenennnn.
Permissions................coenl .
Store and Forward...................
Surcharge..........coooeiiiiiiiin..
Troubleshooting......................

Heartland

A Global Payments Company

Version

Author

Date

Revisions

1.0

Shane Logsdon

5/18/21

Initial documentation
release

1.1

Shane Logsdon

5/26/21

Update connection
config to show
non-test way of
getting application
context

1.2

Phil White

4/20/22

Added option for
ClientTxnID to the
CreditAuth builder
and OTA/firmware
update, and update
to the latest BBPOS
SDK to resolve lost
Bluetooth connection
scenario.

1.3

Phil White

1/11/23

Added information for
using
AutoSubstantiation.

1.4

Phil White

5/16/23

Updates to the entire
document as the
SDK now supports
the C2X and Moby
5500 devices.

1.5

Phil White

12/5/23

Updated text in
relation to OTA
firmware updates as
it is now supported
for Moby 5500.

1.6

Phil White

1/16/24

Added new section
for store and forward
(SAF).

Heartland

A Global Payments Company

1.7

Phil White

9/12/24

Added info for
surcharge.Updated
cardholder interaction
code sample.

1.8

Phil White

11/7/24

Updated surcharge
info with
pre-tax/post-tax.

Heartland

A Global Payments Company

SDK Configuration

While the SDK manages the communication with the device and the gateway, neither it nor the
device maintains a copy of the merchant account credentials used, so these will need to be set
by your application at runtime. Below are code snippets for SDK imports to be used as well as
configuring the SDK with credentials:

// Used Imports example code

import java.math.BigDecimal;

import com.heartlandpaymentsystems.library.entities.Card;

import com.heartlandpaymentsystems.library.terminals.ConnectionConfig;

import com.heartlandpaymentsystems.library.terminals.DevicelListener;

import com.heartlandpaymentsystems.library.terminals.entities.TerminalResponse;

import com.heartlandpaymentsystems.library.terminals.TransactionListener;

import com.heartlandpaymentsystems.library.terminals.transactions.BaseBuilder;

import com.heartlandpaymentsystems.library.terminals.c2x.C2XDevice;

import com.heartlandpaymentsystems.library.terminals.moby.MobyDevice;

import com.heartlandpaymentsystems.library.terminals.transactions.CreditAuthBuilder;

import com.heartlandpaymentsystems.library.terminals.entities.CardholderInteractionRequest;

import com.heartlandpaymentsystems.library.terminals.entities.CardholderInteractionResult;

import com.heartlandpaymentsystems.library.terminals.enums.Environment;

import com.heartlandpaymentsystems.library.terminals.enums.TransactionStatus;

// Configuration example code

ConnectionConfig

connectionConfig.
connectionConfig.
connectionConfig.
connectionConfig.
connectionConfig.
connectionConfig.
connectionConfig.
connectionConfig.
connectionConfig.
connectionConfig.

//C2X
C2XDevice device

this.getApplicationContext (),

connectionConfig = new ConnectionConfig();
setUsername ("XXXXXXXXXXxXxX") ;

setPassword ("xxxxxxxx") ;

setSitelId ("xxxxx") ;

setDevicelId ("xxxxxxx") ;

setLicenselId ("xxxxx");

setConnectionMode (ConnectionMode.BLUETOOTH) ;
setEnvironment (Environment.TEST) ;
setSafEnabled (safEnabled) ;
setSafExpirationInDays (5) ;
setSurchargeEnabled (surchargeEnabled) ;

= new C2XDevice (
// when called from an activity

connectionConfig

)i

//Moby 5500

MobyDevice device
this.getApplicationContext (),

= new MobyDevice (
// when called from an activity

connectionConfig

);

Heartland

A Global Payments Company

Bluetooth Pairing

Before creating a bluetooth connection with the device, your application requires some
additional code in the form of a device listener / delegate object. Here’s a brief description of
each of the available methods and how they can assist in your application development:

e onBluetoothDeviceFound - As the bluetooth scanning process continues, this
method will be called by the SDK as soon as a device is found, allowing your application
to immediately update its Ul to present this information to the user.

e onBluetoothDeviceList - Once the bluetooth scanning process completes, this
method will be called by the SDK, signaling that no additional devices are currently
available. The user should select one of the available devices or check their settings
before initiating another bluetooth scan.

e onConnected - This method will be called by the SDK once a successful bluetooth
connection has been established with the selected device.

e onDisconnected - This method will be called by the SDK when the bluetooth
connection has been lost.

e onError - This method will be called by the SDK if any errors occur during the
bluetooth connection process.

e onTerminalInfoReceived - This method may be called by the SDK if any
information about the device is available.

Your application will need to initiate the bluetooth scanning process by calling the initialize
method on the device object. Any progress along the way will be indicated by the SDK calling
the appropriate method on your application’s device listener / delegate object.

Once the user selects their correct bluetooth device, your application will need to update the
SDK by calling the connect method on the device object, and this method will require an
object obtained by either the onBluetoothDeviceFound method or the
onBluetoothDeviceList method.

// Device Bluetooth Connection example code

device.setDevicelListener (new DevicelListener () {
@Override
public void onBluetoothDeviceFound (BluetoothDevice bluetoothDevice) {
// receive available bluetooth devices as they are found

}

@Override

Heartland

A Global Payments Company

1)

public void onBluetoothDevicelList (HashSet<BluetoothDevice> devicelist)
// receive list of available bluetooth devices

// present to user for selection/confirmation

if (devicelist == null || deviceList.isEmpty()) {

return;

// connect to the selected device
device.connect (devicelList.iterator () .next());

@Override

public void onConnected (TerminalInfo terminalInfo) {
// device is connected
// allow processing

@Override
public void onDisconnected() {
// device has disconnected

@Override
public void onError (Error Error, ErrorType errorType) {

// handle errors

@Override
public void onTerminalInfoReceived(TerminalInfo terminalInfo) ({
// handle received device information

// initiate a bluetooth scan

device.initialize();

USB (Moby 5500)

The Moby 5500 supports USB communication which can be used instead of bluetooth. Just like
with bluetooth, you will need to set up the same DevicelListener shown above in the

“Bluetooth Pairing” section.

Your application will initiate the USB connection process by calling the initialize method on
the device object. The onConnected method will be called when the connection is

established.

{

Heartland

A Global Payments Company

Transaction Listener

Before starting a transaction request, your application requires some additional code in the form
of a transaction listener / delegate object. Here'’s a brief description of each of the available
methods and how they can assist in your application development:

e onStatusUpdate - As the EMV process occurs, this method will be called by the SDK
when the device may need to prompt the user with information about the current status.
Any status update received by this method should be displayed to the user.

e onCardholderInteractionRequested - As the EMV process occurs, this method
will be called by the SDK when the card holder needs to take action. This is currently
limited to EMV application selection and confirmation of the final authorization amount.
NOTE: Version 1.4.0 and above changes this function to return a boolean instead of
void. Return true if you handled the interaction and false if you did not.

e onTransactionCompleted - Once the authorization request has been submitted to
the gateway, this method will be called by the SDK, passing the authorization response
to your application.

e onError - This method will be called by the SDK if any errors occur during the
transaction process.

// Transaction Response Handling example code

device.setTransactionListener (new TransactionListener () {
@Override
public void onStatusUpdate (TransactionStatus transactionStatus) {

// inform user of status updates

@Override
public boolean onCardholderInteractionRequested (
CardholderInteractionRequest cardholderInteractionRequest) {
// prompt user for action
CardholderInteractionResult result;
switch (cardholderInteractionRequest.getCardholderInteractionType()) {
case EMV_APPLICATION_SELECTION:
String[] applications =
cardholderInteractionRequest.getSupportedApplications () ;

// prompt user to select desired application

// send result

result = new CardholderInteractionResult (
cardholderInteractionRequest.getCardholderInteractionType ()

)i

Heartland

A Global Payments Company

result.setSelectedAidIndex (0) ;
device.sendCardholderInteractionResult (result);
return true;

case FINAL AMOUNT CONFIRMATION:
// prompt user to confirm final amount
result = new CardholderInteractionResult (

cardholderInteractionRequest.getCardholderInteractionType ()

)i
result.setFinalAmountConfirmed (true) ;
device.sendCardholderInteractionResult (result);
return true;

case SURCHARGE_REQUESTED:
// prompt user to approve/decline the surcharge amount
result = new CardholderInteractionResult (

CardholderInteractionType.CARDHOLDER SURCHARGE CONFIRMATION) ;

result.setFinalAmountConfirmed (isApproved) ;
device.sendCardholderInteractionResult (result) ;
return true;

default:
break;

}

return false;

@Override
public void onTransactionComplete (TerminalResponse response) {

// handle response

@Override
public void onError (Error error, ErrorType errorType) {
// handle errors

1)

Transaction Processing

Your application will need to initiate the transaction request process by creating the correct
request builder, preparing any required data / information, and executing the builder. Any
progress along the way will be indicated by the SDK calling the appropriate method on your
application’s transaction listener / delegate object.

// Initiate Transaction - CreditAuth - Manual Entry example code

Card card = new Card();

card.setNumber ("424242***x**x*4242") ;

card.setExpMonth (12) ;

card.setExpYear (2025) ;

card.setCvv ("123");

CreditAuthBuilder builder = new CreditAuthBuilder (device);

10

Heartland

A Global Payments Company

builder.setAmount (new BigDecimal ("10.00"));
builder.setCreditCard(card) ;
builder.execute() ;

// Initiate Transaction - CreditAuth - Tap/Insert/Swipe example code

CreditAuthBuilder builder = new CreditAuthBuilder (device) ;
builder.setAmount (new BigDecimal ("10.00"));
builder.execute() ;

// Initiate Transaction - CreditAddToBatch - example code

CreditCaptureBuilder builder = new CreditCaptureBuilder (device);
builder.setTransactionId(transactionId);
builder.execute () ;

// Initiate Transaction - CreditSale - Manual Entry example code
Card card =
card.setNumber ("424242*%*****x4242") ;
card.setExpMonth (12) ;
card.setExpYear (2025) ;

card.setCvv ("123");

new Card();

CreditSaleBuilder builder = new CreditSaleBuilder (device) ;
builder.setAmount (new BigDecimal ("10.00"));
builder.setCreditCard(card) ;

builder.execute () ;

// Initiate Transaction - CreditSale - Dip/Swipe example code

CreditSaleBuilder builder = new CreditSaleBuilder (device);
builder.setAmount (new BigDecimal ("10.00"));
builder.execute();

// Initiate Transaction - Tip Adjust - example code

CreditAdjustBuilder builder = new CreditAdjustBuilder (device);
builder.setTransactionId(transactionId);
builder.setAmount (new BigDecimal ("12.00"));
builder.setGratuity(new BigDecimal ("2.00"));
builder.execute();

// Initiate Transaction - CreditReturn by Transaction ID - example code
CreditReturnBuilder builder = new CreditReturnBuilder (device);
builder.setTransactionId(transactionId);

builder.setAmount (new BigDecimal ("10.00")) ;

builder.execute() ;

// Initiate Transaction - CreditVoid - example code

CreditVoidBuilder builder = new CreditVoidBuilder (device);
builder.setTransactionId(transactionId) ;

11

Heartland

A Global Payments Company

builder.execute () ;
// Cancel a transaction (no effect if there is no transaction active)

device.cancelTransaction () ;

Getting gift card PAN (Moby 5500)

You can get the SVA PAN data from a gift card when using a Moby 5500. Use the function
doSvaStartCard() to start the card reading process and then receive the data on the callback to
onTransactionComplete().

Custom Client Transaction ID

To use your own Client Transaction ID, set the value that you want by using the
setReferenceNumber method of the builder, as shown below. If you do not set your own
reference number, a transaction ID will be generated automatically.

//Set the reference number
builder.setReferenceNumber (yourClientTxnId) ;

Once the transaction is complete, you will see the same value returned inside the
TerminalResponse oObject parameter of onTransactionComplete.

//Get the transaction ID
transaction.getTransactionId() ;

Auto-Substantiation

Auto-substantiation is used in the healthcare industry as a result of IRS Notice 2006-69 for
consumers to use flexible spending account (FSA/HRA) debit cards where the transaction is
automatically substantiated at the POS. For merchants who support auto-substantiation at the
POS, consumers no longer need to file a separate claim for benefits

To take advantage of auto-substantiation, the merchant must use an Inventory Information
Approval System (IIAS). The IIAS identifies the qualified healthcare products being purchased
by the cardholder at the POS. The [IAS must identify the FSA and HRA cards, automatically
differentiate between qualified and non-qualified products at the POS, flag the items on the
customer receipt, subtotal the qualified healthcare products amount including tax and discounts,
and accommodate split-tender capability for non-qualified products.

Here is an example for how you can set specific amounts for dental, prescription, clinic, and

vision. These amounts must not add up to more than the main transaction amount or an
exception will be thrown.

//Set the healthcare values

12

Heartland

A Global Payments Company

creditSaleBuilder.setClinicSubTotal (new BigDecimal (5));
creditSaleBuilder.setDentalSubTotal (new BigDecimal (5));
creditSaleBuilder.setPrescriptionSubTotal (new BigDecimal (5));
creditSaleBuilder.setVisionSubTotal (new BigDecimal (5));

13

Heartland

A Global Payments Company

OTA Updating

The SDK supports OTA (over-the-air) updates for the C2X/C3X and Moby 5500 firmware and
configuration updates for C2X/C3X. You will need to establish a bluetooth connection with the
device to check for and install updates.

The first step is for your application to request the available versions for either firmware or
config. You will also need to set the proper listener so the SDK can notify for success or failure.

//Set the listener for the available terminal versions

device.setAvailableTerminalVersionsListener (new AvailableTerminalVersionsListener () {
@Override
public void onAvailableTerminalVersionsReceived (TerminalUpdateType type, List<String>
versions) {
//choose a version to install

@Override
public void onTerminalVersionInfoError (Error error) {
//handle error

1)

//Request the available terminal firmware versions
device.getAvailableTerminalVersions (TerminalUpdateType.FIRMWARE) ;

//Request the available terminal config versions
device.getAvailableTerminalVersions (TerminalUpdateType.CONFIG) ;

NOTE: For Moby 5500, the List of versions returned in the
onAvailableTerminalVersionsReceived callback will only return a single String stating “Update
available” as it does not provide the actual version number. Also, as noted above, the Moby
5500 does not currently support OTA configuration updates.

After getting the available terminal version for the selected TerminalUpdateType, you can
initiate the download and install to the device. Make sure that the SDK is able to complete the
process without interruption. A separate listener is used for the installation and will give
progress updates.

//Set the listener for terminal updates
c2XDevice.setUpdateTerminallistener (new UpdateTerminallListener () {
@Override
public void onProgress (@Nullable Double completionPercentage, @Nullable String
progressMessage) |
//Progress updates

@Override

14

Heartland

A Global Payments Company

public void onTerminalUpdateSuccess () {
//Update completed successfully
}

@Override
public void onTerminalUpdateError (Error error)
//Handle error
}
}) i

Request the terminal update by using one of the “versions” returned inside the available
terminal updates listener method, onAvailableTerminalVersionsReceived.

NOTE: As mentioned above, the Moby 5500 callback for available versions does not give an
actual version and so the call to updateTerminal will ignore the 2nd parameter for version. This
means that you can pass in a null value or any String value you want.

//Request the terminal update
device.updateTerminal (TerminalUpdateType.FIRMWARE, versions.get(i));

After the update is completed successfully, the device will disconnect and finish completing the
process. You will see flashing lights on the terminal indicating this final step. Once the terminal
has finished the process, you will be able to connect again as usual.

Permissions

The SDK requires some permissions to properly function. These include permission for
INTERNET so it can perform the transaction network requests and bluetooth-related
permissions so the SDK can bluetooth connect to the terminals. These bluetooth permissions
include ACCESS_FINE LOCATION because on Android 11 and lower, a Bluetooth scan could
potentially be used to gather information about the location of the user. You will need to request
these permissions in your application depending on what functionality you want to use.

The SDK includes the helper class PermissionHelper. This class can be used to request the
permissions needed. You can see how it is used by referencing the included example-app code.

15

Heartland

A Global Payments Company

Store And Forward

Store and forward (SAF) allows transactions to be stored when connection issues prevent
processing and then later can manually be processed when the connection is stable again.
When SAF is enabled, any supported transaction that fails to process due to server errors or
client-side connection issues will be stored on the android device in a secure database. When
the user is confident that the server or connection issues are resolved, they can upload all the
pending transactions that are stored. This upload process processes each stored transaction
one at a time, going oldest to newest.

Setup

To enable SAF, simply add a few lines of code to your ConnectionConfig setup. Use
setSafEnabled to enable the feature and use setSafExpirationInDays to setthe
number of days that a stored transaction can be saved before it is automatically deleted. As with
other ConnectionConfig settings, these must be set before connecting to the device.

connectionConfig.setSafEnabled (true) ;
connectionConfig.setSafExpirationInDays (5);

SAF Listener
To receive callbacks related to SAF, you’ll also need to use setSafListener on the device
object.

device.setSaflListener (new SafListener () {
@Override
public void onProcessingComplete (List<TransactionResponse> responses) {
//callback for when all previously stored transactions have been attempted

@Override
public void onAllSafTransactionsRetrieved (List<SafTransaction> obfuscatedSafTransactions) {

//callback when the requested transactions have been retrieved

@Override
public void onError (Error error) ({

//callback for errors

@Override
public void onTransactionStored(String id, int totalCount, BigDecimal totalAmount) {

//callback when a transaction has been stored in the database

@Override
public void onStoredTransactionComplete (String id, TransactionResponse

transactionResponse) {

16

Heartland

A Global Payments Company

//callback when a single transaction processing has been attempted

1)

Upload SAF
When ready to upload stored transactions, simply call uploadSAF to initiate the upload process,
like so:

device.uploadSAF () ;

When this process is complete, the onProcessingComplete callback will be called with a full list
of results.

Acknowledgement

When a transaction has been completed with approved or declined, the transaction should be
acknowledged so it can be deleted from the database. If the transaction is not acknowledged, it
will stay in the database until it is expired. To acknowledge, use this method:

device.acknowledgeSAFTransaction (id) ;

This can be done inside the callback for onStoredTransactionComplete (see the
example-app for examples on all of the items discussed in this document).

Force SAF
Whether for testing or because your connection is unsteady, you may want to force SAF for a
period of time. To do so, use this method:

device.setForcedSafEnabled (true);

This option can be toggled at any time once connected to the device and will automatically store
supported transactions, whether or not there is a working internet connection.

Follow-Up Transactions

For handling follow-up transactions like refund or void, special steps must be taken when
dealing with a stored and unprocessed transaction. When a transaction is stored, it provides a
SAF ID for it. This SAF ID is used in place of a transaction ID when doing a follow-up
transaction. So if a sale transaction is stored and you would like to void this transaction, you
would use the SAF ID provided as the transaction ID for the void request. When the SAF items
are uploaded/forwarded, it will go through them in order of oldest to newest and update the void
request with the actual transaction ID after the sale is processed.

17

Heartland

A Global Payments Company

Surcharge

With surcharge enabled, a 3% charge will be added to the total for sale/auth transactions that
use a credit card. No charge is added if the card type is unable to be detected. To enable
surcharge, simply set the option in the ConnectionConfig before connecting to the terminal:

connectionConfig.setSurchargeEnabled (surchargeEnabled) ;

Surcharge requires that the cardholder is given the opportunity to approve/decline this charge
so the new cardholder interaction type of SURCHARGE_REQUESTED has been added and
this interaction request will occur when surcharge is enabled and the card was determined to be
a credit card.

case SURCHARGE_REQUESTED:
// prompt user to approve/decline the surcharge amount
return true; //Only return true if you actually showed a prompt

Pre-Tax vs. Post-Tax

The default setting is for the surcharge amount to be calculated using the total amount as-is, but
depending on the state you are in, this might need to be calculated without including tax. If you
need surcharge to be calculated pre-tax, then use this ConnectionConfig option:

connectionConfig.setSurchargePreTax (surchargePreTaxEnabled) ;

Besides setting this ConnectionConfig option, a tax amount must also be provided. This tax
amount value is treated the same as gratuity and is considered a part of the total, so a pre-tax
surcharge calculation will take the provided total, subtract the tax amount, and then calculate
the 3% surcharge. The CreditSaleBuilder and CreditAuthBuilder classes have been updated to
include this new tax amount variable.

creditSaleBuilder.setTaxAmount (new BigDecimal (taxAmount)) ;

18

Heartland

A Global Payments Company

Troubleshooting

Device cannot be paired
o Please press the power on button to restart your device.
o Please check to see if you can find the device’s “Serial Number” (Shown on the
back of the device) in the “Scanned Device List” of your smartphone or tablet.

Device loses the connection with your smartphone or tablet when the device has gone
into auto-off mode
o Please press the power on button to turn on the device again. The device will
automatically
connect with your smartphone or tablet again.
The device may be at lower battery level, please use the USB cable to recharge
it, then retry.
o Please ensure the device or smartphone/tablet is within the reception range.

Device does not work with your phone or tablet
o Please ensure the Bluetooth® function of your smartphone or tablet is turned on.
o Please check if the version of your operating system is supported for this device’s
operation.

Device cannot read your card successfully
o Please press the power on button to turn on the device again.
o The device will automatically connect with your smartphone or tablet again.
o The device may be at lower battery level, please use the USB cable to recharge
it, then retry.
Please ensure the device or smartphone/tablet is within the reception range.
Inserting card
m Please check if the device has power when operating and ensure devices
are connected.
Please follow the application instructions to insert or tap the card.
Please ensure that there is no obstacle in the card slots.
Please check if the chip of the card is facing the right direction when
inserting the card.
m Please ensure that your phone/ tablet is a supported model for this
device’s operation.
m Please insert the card with a more constant speed.
o Tap Card/Mobile Wallet
m Please check if your card supports NFC payment.

19

Heartland

A Global Payments Company

m Please ensure your card is placed within 4 cm range on top of the NFC
marking.

m Please take out your NFC payment card from your wallet or purse for
payment to avoid any interference.

Device has no response
o Please use a paperclip to press the reset button at the bottom for reboot.

20

